
Simulating LEGO Mindstorms Robots
to Facilitate Teaching Computer Programming

to School Students

Torsten Kammer1, Philipp Brauner2, Thiemo Leonhardt1,
and Ulrik Schroeder1

1 RWTH Aachen University, Lehr- und Forschungsgebiet Informatik 9
Ahornstr. 55, 52074 Aachen, Germany

{torsten.kammer,thiemo.leonhardt,ulrik.schroeder}@rwth-aachen.de
2 RWTH Aachen University, Human Technology Centre

Theaterplatz 14, 52056 Aachen,
brauner@humtec.rwth-aachen.de

Abstract. Programmable robots like Lego Mindstorms have proven to
be an effective mediator to teach computer programming to school chil-
dren. Therefore several projects that aim at increasing the interest in
computer programming and computer science in general use robots as a
cornerstone in their course concepts. Handing out robotic kits to the
school students who have participated in the courses is not feasible,
thus the learning content cannot be repeated and enhanced at home.
We developed a flexible multi-user simulation environment for LEGO
Mindstorms NXT robots which is closely integrated into our pedagog-
ical teaching scenarios. User tests show that this environment can be
successfully used to increase the long-term outreach of our courses.

Keywords: Simulation Based Learning, CS0, Simulator, LEGO Mind-
storms, NXT.

1 Introduction

Despite the economic crisis, demand for IT-professionals continues to be strong.
Therefore, one goal to achieve is to optimize teaching at schools in quality and
quantity in order to improve young peoples interest in science, technology en-
gineering and mathematics (STEM). The PISA study revealed a high deficit
in German school education especially in international comparison. The lack of
mastery of basic skills due to lack of references to applications and networking
of teaching has been criticized, as well as rather static teaching scenarios. An-
other aspect is the low number of female students in STEM subjects. Already
in school, girls show less interest in topics of computer science in Germany[12].

To increase the participation in STEM in general and the participation of
women in particular a lot of projects have been initiated. One popular concept
is to use robots as a tool to increase interest in computer programming and
computer science [6,9,5]. In a controlled experiment we found that programming

C. Delgado Kloos et al. (Eds.): EC-TEL 2011, LNCS 6964, pp. 196–209, 2011.
c⃝ Springer-Verlag Berlin Heidelberg 2011

brauner@humtec.rwth-aachen.de


Simulating LEGO Mindstorm Robots 197

robots resulted in significantly better learning outcomes, increased motivation,
and increased interest in STEM compared to programming visual objects on the
computer screen [2].

Therefore we implemented a series of robotic workshops mainly for girls in
the age of eleven to twelve. These workshops last two days and are carried out
in local schools instead of the regular lessons. The students learn the basics
of computer programming using Lego Mindstorms NXT robots. This hardware
allows users to build a wide variety of robots and offers (among others) the C -
like programming language NXC (Not Exactly C) to develop software for them.
Our course concept has run successfully for two years, and approximately 1250
school students have participated in our robotic courses. Our evaluation shows
that students like the courses and that their interest in STEM in general and
computer science in particular has risen after participation in a workshop [8].

However, one drawback of our course concept is the limited sustainability.
As each robotic set costs roughly 350 Euros, most participants do not own one
privately. Thus participants usually cannot repeat the subject matter individu-
ally or deepen their programming knowledge on their own after the workshop
has ended. This limits the benefit of the project, because the participants would
probably learn more if they had more time to experiment with the robots. To
overcome this problem we developed a simulator that is closely integrated into
our course concept and can easily be used by individual students or groups of
students after the workshop has ended.

The simulator provides a three dimensional view on a standard LEGO Mind-
storms NXT robot and its environment. The simulated robot model can be mod-
ified by adding or removing sensors or by changing the positions of the sensors.
The environment is easily reconfigurable with walls and arbitrarily shaded floor
tiles so that a magnitude of learning scenarios can be created. The simulator can
be downloaded for free from our InfoSphere website1.

We focused on the learning experience with regard to computer science educa-
tion. Thus we didnt provide a physically accurate simulation of the environment,
the robot and its components, but rather an abstraction as learning tool. How-
ever, the simulated robot resembles the behavior of a real robot very closely.
Additionally, the simulator is able to communicate with other instances of the
simulation environment over a network. This allows users to implement and test
their robot programs collaboratively in a shared virtual environment similar to
collaborative scenarios of our go4IT!-workshops.

The simulator directly executes code compiled for the NXC platform. This
allows users to develop software using the same tools as used in the workshops
for the actual device and test the software without access to the hardware,
both at school and at home. As the simulator executes native code, it can also
be used with arbitrary third party tools like a programming environment or a
programming language different from the ones we used in our courses.

1 http://schuelerlabor.informatik.rwth-aachen.de/simulator

http://schuelerlabor.informatik.rwth-aachen.de/simulator


198 T. Kammer et al.

2 Course Concept

During the first day students build a simple LEGO Mindstorms robot which can
move on wheels and can utilize various sensors. The students have been familiar
with LEGO blocks since kindergarten, so there are no problems to build a work-
ing robot. After that the students actively explore the first simple commands to
control the robots movement (forward, backward, different speeds, square, circle,
stop for obstacles or at certain distances) and to write corresponding programs
in NXC. At the end of the first day the robots control the touch sensor and play
self-composed and programmed songs. These goals are usually achieved by all
participants.

During the second day students learn to control additional sensors (audio,
ultrasonic and light sensors). Thus, students come up with more advanced tasks
they want to implement. Potential projects are discussed by the participants
and are implemented mostly without help of the tutors. Individual solutions of
a team are presented to all students and successful students are encouraged to
help the others as experts in their problem-solving. At the end of the second
day, all participants work on a common task for the whole group such as dance
performances and choreographies for interacting robots. In this case, all robots
of all teams are involved in the common performance.

The workshop ends with the presentation of this team performance in front
of classmates, teachers, parents, or sometimes the invited press. The students
gain recognition for their work through the feedback of the audience. At the
end of the workshop all students have successfully solved tasks independently
and developed programs to let a robot perform a certain task. The analysis and
solution of complex problems enhance the self-efficacy of the students (“The
robot does what I want!”).

Fig. 1. Workshop impression. The robot is programmed to follow the black line.



Simulating LEGO Mindstorm Robots 199

3 Related Work

The field of simulation is a wide one, ranging from simulators for individual
physical attributes of single components all the way to fully integrated simula-
tions of industrial machinery. Simulating what is essentially a toy, and with little
physical accuracy, this simulator falls on the low end of this scale.

3.1 Robot Simulators

Simulators for Lego Mindstorms already exist, although they have different goals
and limitations as the one developed here. RobertaSim [15] is a simulator for
the RCX microcontroller (the deprecated LEGO Mindstorms RCX sets) for Mi-
crosoft Windows platforms. It was developed for courses specifically aimed at
teaching programming to girls. The goal is to have a robot move through a vir-
tual environment executing the same code that works on real robots. This makes
it similar to the go4IT!-simulator developed in our project. However, it cannot
work as a replacement, as it simulates a different hardware generation. Fur-
thermore, RobertaSim focuses on physically accurate simulation, which makes
it more complex to use and thus less suitable for our computer science teach-
ing scenarios. In our teaching scenarios the focus lies on the understanding of
algorithms (e.g. path finding algorithms) while the increased accuracy leads of
a simulation usually leads to different kinds of problems that must be solved
(e.g. a robots sensor can be caught by a wall tile). Additionally it lacks network
support, thus it cant be used in collaborative learning scenarios.

“LMS” (Lego Mindstorms simulator) simulates Mindstorms NXT controllers
[13]. It requires the programs to be written for a custom firmware. This sim-
ulation aims at complex scenarios and offers a fairly extensive user interface.
While sharing many of our goals on the technical side, this simulator is far more
complicated than ours and was not designed for teaching school children. LMS
also requires a custom firmware to be installed on the robots which limits its
compatibility with the development tools we use in our courses.

At the higher end, simulation of robots can become extremely precise and
complex. An example for this is SimRobot [14]. Here, complex robots can be
defined including sensors, various joints and even simulated cameras. Users can
add more elements by implementing their own modules in C++. There is also
a wide variety of scenarios that can be modeled through this extensibility. This
simulator is clearly more advanced than the one described here, but this com-
plexity also makes it unsuitable for the basic teaching task that the simulator is
meant to fulfill in our scenario.

3.2 Other Microworld Approaches

The Java Hamster programming model or the Greenfoot microworld [1,7] follow a
similar approach in teaching the basics of programming to children. Here, users
program a cybernetic beastie such as a virtual turtle on the computer screen
using a subset of the Java language. The feature set of the hamster is limited



200 T. Kammer et al.

to turning, moving in a straight line, detection of walls and similar high-level
concepts. It differs from our simulator firstly in that the code cannot be used
on any real-life robot. It also offers a more abstract and high-level approach. In
our simulator the motors have to be turned at different speeds to execute a turn
while the hamster simulator has a direct turn instruction. This is, in fact, an
adoption of Seymour Paperts microworld approach [10] for teaching computer
science to school children.

In our course concept we intentionally use a programming model that requires
the users to program individual sensors and actuators in a C -like syntax without
hiding the actual programming complexity by providing abstractions through
pre-defined commands like “turnLeft()” or puzzle programming metaphors like
in Scratch [11]. We found that the participants of our courses enjoy presenting the
more difficult looking C -like code to their classmates and their parents and that
this leads to an increased self-concept in dealing with and interest in technology.

A number of approaches have been made to simulate robots in general and
Lego Mindstorms in particular, but none fulfill our requirements for simple teach-
ing scenarios as described in the following.

4 Requirement Analysis

Our main goal was the development of a simulator for LEGO Mindstorms NXT
robots that can easily be used by all participants of our robotic courses. That
led to a number of requirements from a technical and a usability perspective.

4.1 Hardware Requirements

First, we strived for a platform independent solution that operates on Microsoft
Windows, Mac OS X and Linux systems. An important goal of our Simulator
project is to have an appealing 3D output. To guarantee cross-platform compat-
ibility we decided to implement all of this using OpenGL.

The participants of our courses come from different schools and backgrounds.
Therefore, we cant assume modern computing machinery to be available to all
school students. We expected that many of the target systems will have rela-
tively little processing power, so we decided to use as little OpenGL features as
possible while still maintaining a clean code base. To ensure this, only features
included in the 1.5 version of the OpenGL specification were used. This offers
features such as vertex buffer objects for management of geometry data, but
does not yet include any form of pixel- and vertex shaders that may cause prob-
lems on older hardware, for example with integrated GPUs. Furthermore, only
features included in OpenGL ES 1.1, a subset of OpenGL 1.5 specifically aimed
at embedded systems, were used. In the future this might allow us to explore
new teaching scenarios that incorporate simulation based learning and mobile
devices.



Simulating LEGO Mindstorm Robots 201

4.2 Usability Requirements

The simulator should use the same development environment as used for real
robots in the courses. Consequently, it should read the same bytecode that is
produced by the development environment. It should also be possible to easily
launch the simulator directly from the development environment that is used in
our courses.

The simulator should be easy to deploy. Consequently the simulator needs to
be executable without the need for an installation routine. No settings may be
stored in the Windows Registry or other local configuration files. The application
should not need extra privileges that would require an administrator or root
account.

After the end of the course the simulator and the other development tools
should be handed out to the participants. They must be able to easily run the
development and simulation environment when at home.

The number of user interface elements should be kept minimal and they should
require little or no explanation. To make the user interface that simple, it con-
tains only five buttons by default. The only more complex part is a sensor se-
lection view that can be opened to configure the robot (see Figure 3). There is
no modality: While the configuration view is opened, all other functions of the
user interface remain fully usable and the program is not paused. Apart from
the window title required by the operating system, the user interface does not
contain any text at all. Thus the program can be used regardless of languages
the user may speak and without needing any localization for the content.

4.3 Simulation Requirements

As we focus on teaching computer science concepts, it is not necessary to simu-
late many different robot models or even allow full Lego construction. However,
as different sensor placements obviously have a profound impact on the algo-
rithms used to solve a given problem (e.g. path finding algorithms), it should be
possible to change the sensor placements easily. Likewise, the virtual 3D envi-
ronment should be easy to edit, so that the algorithms can be tested in different
environments (like different maze setups). As the focus should be on simulating
programs, not physics, physical simulations can and should have low accuracy.

The simulator is able to emulate a reasonably large subset of all programs for
the NXT system. Nevertheless some rarely used commands of the NXT bytecode
need to be implemented. Of course all language features taught in our robotic
courses must work within the simulator.

4.4 Additional Features

Our robotic courses are group learning experiences in which two students share
a laptop and a robot and work together and different teams and their robots
also interact with each other in common tasks. This collaborative group learning
experience should also be possible for students using the robot simulator, thus



202 T. Kammer et al.

we implemented a network mode that allows multiple robots to be simulated in
a shared environment. As easy deployment was a key concern, the simulator uses
network auto discovery to discover other instances of the robot simulator running
on the local network. If one is found, the simulator automatically connects to
this instance and the environment is shared. If no other simulator is found on the
local network, the client automatically becomes a server and starts to announce
itself to future clients. The network layer is targeted at local environments where
auto discovery usually works. There is currently no user interface to manually
configure network settings to allow connections to arbitrary IP-addresses (e.g.
connections over the Internet), even though that would be technically possible.

5 Simulator

The go4IT!-simulator is an interactive program with a GUI and 3D display of
simulated robots. It is written entirely in C++ to support as many platforms
as possible. It uses OpenGL for drawing, OpenAL for sound out- and input and
SDL for the interaction with the operating system. At the core of the system,
an interpreter executes the compiled Lego NXT bytecode.

Fig. 2. Screenshot of the simulator with a single robot, a wall and shaded floor tiles

5.1 Environment

The environment of the simulated robot is designed to be primarily simple to
edit, allowing to create a wide range of scenarios in little time. In our simulator
the environment is a grid of 20×20 cells by default. Grid-based approaches have



Simulating LEGO Mindstorm Robots 203

worked very well for this in various forms, for example by using height maps to
display the ground in large outdoor scenes, e.g. in [4]. Each cell can have one
of two states: Wall, which the robot cannot pass through, and floor, which the
robot can drive on. Touch and ultrasound sensors will detect contact or distance
to the walls. To allow the light sensor to work with meaningful inputs, each cell
has an arbitrary shade of grey (rendered in the user interface as black, gray or
white).

All the attributes of a cell can be changed at any time by clicking on it.
Through the user interface, one can change between height mode (a click toggles
whether the cell is wall or floor), lighten mode and darken mode (Figure 2,
upper right corner). This makes it easy to create mazes for the robot to navigate
through or to create colored lines that the robot should follow. Both tasks are
typical for our robotic courses.

The editor does not allow the cells at the edges of the map to be changed
to floor cells, although their colors can be altered. This prevents the robot from
steering into the void.

5.2 Robot

There is only a single robot model available, using two of the three motor outputs
for propulsion (a model with two wheels is used). The robot is simulated by as-
suming essentially infinite acceleration and ignoring masses, which is a seemingly
imprecise approach. However, the mass of a real robot is low enough compared
to the total power output of the robot that this proves to be an adequate ap-
proximation. This is also aided by the fact that the speed of the motors on the
real robot is electronically regulated to reach a given speed as soon as possible
and then keep it approximately constant. As a result, the difference to a more
realistic simulation is small.

The robot can have up to four sensors registering touch events, light values,
noise levels or distances to an obstacle. Any combination of these sensors is
possible, and the sensors can be freely placed on a circle around the robot. A
sensor may point forward or downwards. Its configuration can be changed at
any time by opening the sensor configuration panel (see Figure 3). Opening this
panel does not pause the execution of the program. Anything that can be done
while the configuration panel is not shown can also be done when it is shown
(e.g. altering the environment by adding a wall).

The execution of a robot program can be paused, which also stops the robot.
It is also possible to reload the program of the robot, which also restarts the
execution from the beginning. A robot can be picked up and placed somewhere
else via drag and drop. This feature is useful in case the robot is stuck inside a
maze and the students want to check if the algorithm is working correctly for
a different position on the map. In case of a networked scenario, all this only
applies to the robot controlled by this particular computer. To signify which
computer owns which robot, each robot has a uniquely colored flag. A flag of
the same color is displayed in the user interface of the computer controlling that
robot (see Figure 2, lower right corner).



204 T. Kammer et al.

Fig. 3. Sensor configuration panel. Sensor 1 is configured as ultra-sound sensor pointing
sideways. Sensor 2 is configured as a touch sensor pointing ahead. Sensors 3 and 4 are
disabled.

5.3 Sensor Values

Generating accurate sensor values is highly important, as this is the only means
of input available to programs running inside of the simulator. The simulator
offers the four types of sensors that are part of the LEGO Mindstorms NXT
sets: Touch sensors, light sensors, sound sensors, and ultra-sound sensors.

Typical programs running on a LEGO Mindstorms NXT robot use polling
to read sensor values. For example, a program that lets the robot follow a dark
line is usually implemented as follows: At first it will turn on the motors. Then
it will constantly check the light sensor until a certain threshold is exceeded
(i.e. until(SensorLight(IN 3) > 40); ). This would trigger several thousand
recalculations of the virtual sensor values per frame of the simulation run-loop.
Hence the simulator calculates the value of each sensor once on every iteration
of the run-loop, regardless of whether and how often it is actually requested, and
caches it until the next iteration of the run loop. As environment and positions
only change once per run through the run-loop at most, this delivers correct
results without calculating sensor data numerous times.

Each sensor is mounted to the robot at a specific angle, has a certain offset,
and may point forward or downwards. This combination creates a specific sensor
position, based on which the results are read. All sensors work the same no matter
if they point forward or downwards, only with different directions. However, as
with real LEGO Mindstorms NXT robots it hardly makes sense to set the touch,
ultrasound, or sound sensor to point downwards.

Ultrasound Sensor. To find the value for the ultrasound sensor, a ray is cast
from the sensors position. It is checked against the environment and other robots,
and shortest distance to any object hit by this ray is used as the sensors value.



Simulating LEGO Mindstorm Robots 205

If no hit is found within the maximum distance, a value of 255 is used instead,
matching the real sensor.

Touch Sensor. For the touch sensor we used collision detection methods. Based
on the sensor position, a bounding box for the active part of the sensor is gen-
erated and tested against the environment and other robots. The robot doesnt
get moved if such a collision occurs, but the sensor value is set correctly.

Light Sensor. The light sensor also casts a ray through the environment and
reports the shade of the cell hit, or 0, for black, if no cell is hit. For calculating
the light sensor value, any robot in the way is ignored, as it is generally not easy
to find a color value for them. In our go4IT!-tasks, light sensors are thus only
use pointing downward to read color information on the floor.

Sound Sensor. The sound sensor does not directly interact with the environ-
ment. Instead, the simulator calculates a value, based on the position of the
sound sensor, the positions and volumes of all robots playing sounds and the
noise reported in from an attached audio source like the computer microphone.
This allows the users of the simulator to build applications that let the simulated
robot react on real-world events like clapping in the hands in front of the com-
puter. The sound sensor also reacts to sounds emitted by other robots connected
in network mode (see below).

5.4 Network Mode

It is possible to run the simulator alone, with a single robot, or together with
others over the network, so that every robot gets shown on every computer. Each
computer in the network simulation executes its own code and transmits the
state changes to the server. Conceptually, there is a difference between the single
server, which calculates the physical simulation for all robots, and clients, that
just execute code, transmit its output and then display robots at the positions
given by the server, but from the users view, both work the same.

5.5 Collision Detection

As robots cant pass through walls or other robots, the simulator uses collision
detection. For this an oriented bounding box of the robots is calculated. These
bounding boxes are also used to provide input values for the touch sensor and
the ultra-sound sensor. In that case a ray is cast from the sensors. In the case
of the ultra-sound sensor the reported distance is the distance from the starting
point of the ray to the nearest point where a bounding box intersects with the
casted ray. As the robot model is not a perfect box, this can result in situations
in which a collision is reported even though the ray might pass the robot model
but not the bounding box. In practice this is not a problem as the area of the
robot is comparably large.



206 T. Kammer et al.

If a robots bounding box has collided with a wall in the environment the robot
is moved away from the wall. This is done without changing the direction of the
robot thus, if the robot hits a wall at an angle, it will slide along that wall. If
two robots collide, both robots are moved so that they no longer collide. This is
done without changing the driving direction.

All this happens in 2D only, as the environment design does not allow any
robot to leave the ground floor. In the special case of a robot being picked up to
move it somewhere else, all collision detection is disabled.

Using this method, no momentum, energy, elastic or plastic properties are
regarded. If a robot hits a wall, it simply stops moving any further, and if it hits
the wall at an angle, it will glide along the wall.

It is possible to implement a more accurate collision model for the simulator,
however, a more accurate representation of physics would require users to not
only develop programs, but also keep in mind the physical properties of the
robot. This higher grade of complexity, however, would increase the extraneous
load of the learners and would hinder their ability to focus on the development
and implementation of algorithms [3].

5.6 Integration into the Development Environment and Process

The simulator described above works well as a stand-alone simulation engine for
Lego Mindstorms NXT bytecode. However we wanted to closely integrate the
simulator into the development process the school students learned and used
during the courses. There the students usually apply an iterative development
cycle in which they start off with defining a goal (e.g. let the robot follow a
dark line). Then they implement the corresponding program and test it. If the
program does not work as expected – which is usually the case –, they go back
to the implementation phase. In our courses this iterative development process
has rather quick cycles, as the deployment of an adjusted program on the robot
can be done within seconds over a Bluetooth connection.

To allow equally fast development cycles when the simulator is used, we closely
integrated the simulator in the BricxCC2 integrated development environment
we are using in the courses. This modification allows the students to automati-
cally deploy a program on the simulator once it is compiled.

6 Evaluation

There were two main parts of the testing. First of all, the simulator was tested
on a number of different computers and different operating systems to ensure
that it is platform independent and easy to deploy. The simulator was tested
with a number of robot programs that the school children developed during our
courses. The programs ranged from rather simple programs that let the robot
drive simple geometric shapes without reacting to sensory input to non-trivial
maze solvers like Pledges Algorithm.
2 http://brixcc.sourceforge.net/

http://brixcc.sourceforge.net/


Simulating LEGO Mindstorm Robots 207

Secondly, a user test with school students was carried out to see how well they
understand the user interface and whether they integrate the simulator into their
development process.

Up to now, the simulator has not been used in our actual go4IT!-workshops
and just put on the web site for download. Thus, there have not been any
evaluations of its utilization as a follow-up learning tool.

6.1 Technical Evaluation

To evaluate if the simulator works platform independent, it was tested with
different computers and using different NXC programs. It was tested successfully
on multiple Mac OS X versions (10.5 and 10.6) using either a PowerPC CPU or
an Intel CPU. It was also tested with Windows XP and Windows 7 running on
an Intel CPU. It worked well with GPUs by ATI and NVIDIA, as well as with
an emulated GPU used in a virtual machine.

A number of programs from the robot workshops were gathered. Their oper-
ations in the simulator were compared to a real Lego Mindstorms NXT robot.
Indeed the programs running on simulated robots worked similar to programs
running on real robots.

Finally, testing was also done with network support between all testing target
systems, as well as locally between two instances running on the same machine.

On all platforms, the simulator was able to execute all test programs accu-
rately and produce results corresponding closely to the ones observed with the
real robot. Network sessions also worked between any of the systems, with each
of the systems working either as server or client. Networking was also tested
with multiple clients and worked as expected there.

No precise performance measurements were gathered, but the simulator worked
without any noticeable slowdowns on all target systems, including in network
mode. The graphics results were generally identical and comparable to the ob-
servations in the real world.

6.2 User Testing

Finally we invited a group of school students of grade ten to twelve to use the
simulator. In addition to the normal BricxCC IDE and a LEGO Mindstorms
NXT robot, the simulator was offered to the students. They were asked about
any problems they noticed.

The students confirmed that such a simulator is a very useful aid because it
allowed faster write-test cycles. They also agreed that the simulator is useful to
repeat the subject matter from the workshops at home.

The students also discovered a number of smaller issues and a few usability
flaws. In particular they criticized:

– It is not possible to remap the motor ports, so code written for a real robot
using different ports for the motors does not work directly.



208 T. Kammer et al.

– The robot can only be picked up, not turned, which would be desirable in
some situations.

– The sensor configuration should persist between starts of the program.
– Some more advanced operations of the NQC programming language were

not implemented.

These issues have been fixed shortly after the user test.

7 Summary and Future Work

The developed simulator is able to execute a wide variety of NXC programs
and allows creating environments for simulated Lego robots to test these pro-
grams. Following the requirements, more complex programs cannot be simulated
accurately, although it should be possible to extend the amount of supported op-
erations in the future. Networking works as expected, and there is no functional
difference between any of the supported platforms. With that, the simulator
fulfills all requirements as a teaching tool.

The simulator is developed to be a teaching tool, and as such the simulation
need not to be exceedingly precise. Also it is not necessary that the full NXC
bytecode and all advanced features are supported. For future work, the tools
scope could be expanded to make it a fully featured simulator for all Lego Mind-
storms robots and programs. This could allow both teaching more advanced
programming techniques and using it to simulate other projects faster. To do
so, first of all, current limitations that were acceptable within the scope of this
project would need to be removed. For example, it should be possible to sup-
port a larger portion of the byte code. In addition, the current simple physical
simulation could be replaced by a more robust one, possibly using libraries such
as Bullet, adding realism, but making programming harder as users would have
to account for physical reactions. In such a situation, it would also be desirable
to have more robots to choose from.

The environment systems could be extended in various ways. Other objects
for the robot to interact with would allow for new, more complex scenarios that
are currently impossible. The same would apply to an environment with more
actions possible, such as ascending to a higher point by means of ramps. This
would necessarily make it more complex to modify the environment and possibly
require a completely different approach to editing.

For such a tool, more efficient networking and Internet support might also
be desirable. This would require making the network protocol more efficient or
replacing it completely, and adding measures against high transmission delays
and improved synchronization techniques.

Since all the libraries used in the simulator are available on other operat-
ing systems, it should be possible to port the simulator to systems such as
GNU/Linux rather easily if desired.



Simulating LEGO Mindstorm Robots 209

References

1. Boles, D.: Programmieren spielend gelernt mit dem Java-Hamster-Modell. Teubner
(2008)

2. Brauner, P., Leonhardt, T., Ziefle, M., Schroeder, U.: The effect of tangible ar-
tifacts, gender and subjective technical competence on teaching programming to
seventh graders. In: Hromkovič, J., Královič, R., Vahrenhold, J. (eds.) ISSEP 2010.
LNCS, vol. 5941, pp. 61–71. Springer, Heidelberg (2010)

3. Chandler, P., Sweller, J.: Cognitive Load Theory and the Format of Instruction.
Cognition and Instruction 8(4), 293–332 (1991)

4. De Boer, W.H.: Fast Terrain Rendering Using Geometrical Mipmapping (2000),
http://www.flipcode.com/tutorials/tut_geomipmaps.shtml

5. Eggert, D.W.: Using the Lego mindstorms NXT robot kit in an introduction to C
programming class. J. Comput. Small Coll. 24(6), 8–10 (2009)

6. Hartmann, S., Schecker, H.: Bietet Robotik Mädchen einen Zugang zu Informatik,
Technik und Naturwissenschaft? – Evaluationsergebnisse zu dem Projekt Roberta.
Zeitschrift für Didaktik der Naturwissenschaften 11, 7–19 (2005)

7. Kölling, M., Henriksen, P.: Game programming in introductory courses with direct
state manipulation. In: Proceedings of the 10th annual SIGCSE conference on
Innovation and technology in computer science education. ITiCSE 2005, pp. 59–
63. ACM Press, New York (2005)

8. Leonhardt, T., Brauner, P., Siebert, J., Schroeder, U.: Übertragbarkeit singulärer
MINT-Interesse-initiierender außerschulischer Maßnahmen. In: INFOS 2011, 14.
GI-Fachtagung Informatik und Schule (September 2011) (accepted)

9. Leonhardt, T., Schroeder, U.: go4IT!: Initiierung und nachhaltige Förderung von
Interesse an MINT-Fächern bei Mädchen. In: Informatische Bildung in Theorie
und Praxis, Beiträge zur INFOS 2009, 13. GI-Fachtagung - Informatik und Schule,
Berlin (2009)

10. Papert, S.: Mindstorms: Children, Computers, and powerful Ideas. Basic Books,
Inc., New York (1980)

11. Resnick, M., Maloney, J., Kafai, Y., Rusk, N., Eastmond, E., Brennan, K., Millner,
A., Rosenbaum, E., Silver, J., Silverman, B., et al.: Scratch: programming for all.
Communications of the ACM 52(11), 60–67 (2009)

12. Schinzel, B.: Informatik und Geschlechtergerechtigkeit in Deutschland
Annäherungen. Reihe Gender Studies (Gender and Science, Perspektiven in
den Natur- und Ingenieurwissenschaften), 127–146 (2007)

13. Schmalzbauer, J., Scheel, O.: Lego Mindstorms Simulator (2011)
14. Siems, U., Herwig, C., Röfer, T.: SimRobot, ein System zur Simulation sen-

sorbestückter Agenten in einer dreidimensionalen Umwelt. No. 1/94 in ZKW
Bericht, Zentrum für Kognitionswissenschaften. Universität Bremen (1994)

15. Theidig, G., Börding, J., Petersen, U.: Roberta - Der Simulator RobertaSim. Fraun-
hofer IRB Verlag, Stuttgart (2006)

http://www.flipcode.com/tutorials/tut_geomipmaps.shtml

	Simulating LEGO Mindstorms Robots to Facilitate Teaching Computer Programming to School Students
	Introduction
	Course Concept
	Related Work
	Robot Simulators
	Other Microworld Approaches

	Requirement Analysis
	Hardware Requirements
	Usability Requirements
	Simulation Requirements
	Additional Features

	Simulator
	Environment
	Robot
	Sensor Values
	Network Mode
	Collision Detection
	Integration into the Development Environment and Process

	Evaluation
	Technical Evaluation
	User Testing

	Summary and Future Work
	References


